A Finite Equational Axiomatization of the Functional Algebras for the Lambda Calculus
نویسندگان
چکیده
A lambda theory satisfies an equation between contexts, where a context is a *-term with some ``holes'' in it, if all the instances of the equation fall within the lambda theory. In the main result of this paper it is shown that the equations (between contexts) valid in every lambda theory have an explicit finite equational axiomatization. The variety of algebras determined by the above equational theory is characterized as the class of isomorphic images of functional lambda abstraction algebras. These are algebras of functions and naturally arise as the ``coordinatizations'' of environment models or lambda models, the natural combinatory models of the lambda calculus. The main result of this paper is also applied to obtain a completeness theorem for the infinitary lambda calculus recently introduced by Berarducci. ] 1999 Academic Press
منابع مشابه
On the algebraic models of lambda calculus
The variety (equational class) of lambda abstraction algebras was introduced to algebraize the untyped lambda calculus in the same way Boolean algebras algebraize the classical propositional calculus. The equational theory of lambda abstraction algebras is intended as an alternative to combinatory logic in this regard since it is a rst-order algebraic description of lambda calculus, which allow...
متن کاملHow to say Greedy in Fork Algebras
Because of their expressive power, binary relations are widely used in program specification and development within formal calculi. The existence of a finite equational axiomatization for algebras of binary relations with a fork operation guarantees that the heuristic power coming from binary relations is captured inside an abstract equational calculus. In this paper we show how to express the ...
متن کاملEquational Axioms for Probabilistic Bisimilarity
This paper gives an equational axiomatization of probabilistic bisimulation equivalence for a class of finite-state agents previously studied by Stark and Smolka ((2000) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 571–595). The axiomatization is obtained by extending the general axioms of iteration theories (or iteration algebras), which characterize the equational p...
متن کاملFinite Axiomatization over CCS with Hennessy’s Merge
This note shows that split-2 bisimulation equivalence (also known as timed equivalence) affords a finite equational axiomatization over the process algebra obtained by adding an auxiliary operation proposed by Hennessy in 1981 to the recursion free fragment of Milner’s Calculus of Communicating Systems. Thus the addition of a single binary operation, viz. Hennessy’s merge, is sufficient for the...
متن کاملModularity in lambda calculus
The variety (equational class) of lambda abstraction algebras was introduced to algebraize the untyped lambda calculus in the same way cylindric and polyadic algebras algebraize the rst-order predicate logic. In this paper we prove that the variety of lambda abstraction algebras is not congruence modular and that the lattice of lambda theories is not modular.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Comput.
دوره 148 شماره
صفحات -
تاریخ انتشار 1999